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LEITER TO THE EDITOR 

Macroscopic dynamics of systems with a small number of 
topological defects in equilibrium and non-equilibrium 
systems 

Helmut R Brand and Kyozi Kawasaki 
Department of Physics, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan 

Received 3 August 1984 

Abstract. We derive dynamic equations for one or a small number of topological defects 
which supplement the hydrodynamic equations (for systems close to local thermodynamic 
equilibrium) or phase equations (for systems far from equilibrium) for the slow variables 
of any ordered medium. Special cases are discussed and a generalisation of the Peach- 
Koehler force is presented. 

The long-time behaviour of many systems in condensed matter physics is strongly 
influenced by the motion of a small number of topological defects. These systems fall 
into two classes: systems close to local thermodynamic equilibrium like liquid crystals 
(de Gennes 1982) or a rotating superfluid 4He (Khalatnikov 1965) and non-equilibrium 
systems such as e.g. the Taylor instability (Swinney and Gollub 1981) which occurs 
when an isotropic liquid between two concentric cylinders is set into motion by rotation 
of the inner cylinder and the BCnard instability (Normand et a1 1977) arising when a 
fluid layer between two plates is subjected to an external temperature gradient parallel 
to gravity. 

In systems close to equilibrium the classical way of describing the long-time, 
low-frequency behaviour without defects is to derive nonlinear hydrodynamic equations 
(Landau and Lifschitz 1959, Martin et a1 1972, Brand and Pleiner 1980) for the 
conserved quantities like density, entropy density, density of linear momentum etc and 
for the variables characterising spontaneously broken continuous symmetries like for 
example the deviations from a preferred direction in nematic liquid crystals. Recently 
(Pomeau and Manneville 1979, Brand and Cross 1983, Brand 1984) it has been proposed 
that an approach is used which is similar in spirit to the description of large aspect 
ratio systems in non-equilibrium phenomena like the Taylor or BCnard instability; the 
phase dynamics. As in hydrodynamics, one extracts the quantities which vary slowly 
in time and space. It turns out that this is the variation of the wavevector transverse 
to the rolls in Rayleigh-BCnard systems (Pomeau and Manneville 1979) and in the 
Taylor vortex state (Brand and Cross 1983), where one has an array of vortices parallel 
to the cylinder axis. In the Taylor wavy mode state, the second spatially periodic 
structure in the Taylor system, one has in addition a propagating wave in the azimuthal 
direction and it is possible (Brand and Cross 1983) to associate a slowly varying 
quantity with this motion as well. The coefficients in these phase equations have to 
be determined from microscopic theory as in hydrodynamics and one frequently uses 

0305-4470/84/160905 + 06$02.25 @ 1984 The Institute of Physics L905 



L906 Letter to the Editor 

amplitude equations (Newel1 1974, Siggia and Zippelius 1981, Brand and Cross 1983, 
Pomeau et a1 1983, Kuramoto 1984) to get explicit expressions for the phenomenologi- 
cal equations. 

Here we focus on the question of how these sets of equations (hydrodynamic and 
phase dynamics) have to be generalised in order to incorporate the macroscopic motion 
of one or a small number of topological defects. In particular one would like to retain 
the form of the macroscopic equations, i.e. one wants to avoid in the final equations 
the appearance of amplitude equations. To avoid this we will present what one could 
call a far-field approximation, i.e. we will be mainly concerned with the influence of 
the defect on the hydrodynamic or phase equations and about the motion of the defect 
(as an extended object) in the background described by the hydrodynamic or phase 
equations. Without defects we have in general a set of macroscopic equations for the 
variables { p,} 

di = g i ( { p k ,  V j ( c k ,  vjvm(Pk,  . . .>) (1)  

valid far from any defect. 
In the vicinity of the core region of a defect-denoted as R hereafter-one has to 

supplement (1) by a set of dynamic equations incorporating temporal and spatial 
variations of the order parameter profile {Si} close to the core of the defects as well 
as cross couplings to the set of variables {pi} 

(2) s i  = h i ( { S k ,  v j s k ,  v j v l s k ,  * *I) + I i ( { s k ,  v j s k ,  v j v I s k ,  p k ,  Vj(Pk, vjv/(Pki * . *I)- 

In a similar way one has to modify (1) by incorporating cross couplings to variations 
of the set {Si} 

di = g i ( { ( P k ,  v j p k ,  V j V I Q k ,  * . + m i ( { p k ,  VjQk,  V j V l q k r  s k ,  v j s k ,  v , v I s k ,  * * (3) 

To be specific, we consider in the following one defect situated at location R(t)  on a 
two-dimensional manifold. Then we have as infinitesimal virtual changes 

SSi=-SR. VSp (4a)  

Similarly we find for the phase variation in the core region R, i.e. the region around 
R where Si differ from their far-field values 

with (PI being the phases associated with an isolated defect at R. Here variations of 
SI,  SS, and variations of 4, (i.e. (c, inside a), 6pl are rigidly coupled to SR, whereas 
outside the volume R where {S,} are constants, there is no coupling to { S q } .  

If we rewrite (2) and (3) for a given set of variables p, and SI,  respectively, and 
make use of (4) we obtain, focussing on the slow motion of the defect, i.e. R 

-d VSI = h , ( { S k ,  v j s k ,  V j V / S k , .  -1) + l i ( { s k ,  vjsk, V ~ V / S k ,  (ck, v J p k ,  v ,v /pk ,  

-li ' vqo, = g n ( { p k ,  v j p k ,  v,vI(Pkr ' * -1) + mn({pk,  v j p k ,  v j v / p k ,  

*I) ( 5 )  

( 6 )  'jSk, vjv/sk, * . .I). 
Taking the inner product, i.e. multiplying ( 5 )  and ( 6 )  by the adjoint zero eigenvector 

of the operator that occurs on the RHS of ( 5 )  and ( 6 )  linearised about the isolated 
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defect configuration and integrating over R we obtaint 

R . D = -  ( j ,VS+j ,V@) i, 
with 

D = i,, ( V S V S  +S2V@V+)  

and 

(7) 

j, = h + 1, j , = ( g + m ) S 2 .  ( 8 6 )  

To arrive at (7) and (8) we have not assumed any analyticity properties for the 
functional dependence of h, I, g and m which will be, in general, nonlinear functions 
of all the arguments. The generalisations of (7) to the case of a small number of 
defects which are well separated is straightforward. One just has to repeat the procedure 
outlined above for every defect separately. 

Equations ( 7 )  and ( 8 )  combined with (1) constitute the main result of the present 
paper; (7) gives a dynamic equation for the defect as a macroscopic, extended object 
and ( 6 )  are the hydrodynamic or phase equations well outside the ‘defect volume’ R. 
In the past similar results for phase dynamics (Brand and Cross 1983) or hydrodynamics 
on the one hand and defect dynamics (Kawasaki 1984b) on the other have been derived 
separately. 

Thus we propose that a condensed matter system containing a small number of 
topological defects can be described by supplementing the hydrodynamic or phase 
dynamic equations with an additional effective equation of motion for each defect:. 
This latter equation is of a different type to the hydrodynamic or phase dynamic 
equation in the sense that it does not correspond to a conservation law or to a broken 
symmetry of the usual type. It is similar to a hydrodynamic equation because it also 
characterises the macroscopic properties of the system, namely the slow motion of the 
topological defect which determines the state over a large surrounding spatial region 
without having to specify details of the core structure. We emphasise that our approach 
is completely independent of the fact of whether or not a Liapunov functional for (2) 
and (3) exists. 

If one assumes that ( 7 )  allows for a static solution one has 

To make (7) and (8) more explicit for special cases we assume for a first example that 
js and j ,  have a gradient expansion, e.g. 

m = mijViSVp +&,V,Vp +. . . (10) 

where mv are functions of S and.  . . indicates terms containing higher-order derivatives, 

t In order not to overburden the notation we restrict ourselves to one pair of variables S and cp in the 
following. The generalisation to more variables is straightforward but requires the introduction of additional 
matrices. Since we concentrate here on the principles of the approach, we avoid these complications which 
reduce the transparency of the method. 
$ In retrospect, one might say that for incommensurate systems equations of a similar type have been given 
before (Kawasaki 1984a), although the generality of the approach was not recognised. 
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higher nonlinearities etc. Inserting (10) and a similar expansion for 1 = l ,ViOVj$ +. . . 
into (5) and ( 6 )  we obtain, after taking (9) into account 

D . k = I I  * V t j + .  . . (11) 
with 

ll = - (VQVS m + V S  - V @  1) I, 
where . , , contains higher-order derivatives and higher nonlinearities and where we 
have introduced 4 = 4 - 4, the part of the phase which is slowly varying and is not 
related to  the particular defect under consideration. m and I stand for the second-rank 
tensors with components M, and I,, respectively. 

Here we have kept only the terms which give finite contributions to the RHS of (1 1) 
as R shrinks to zero. This can be seen by power counting since V S  and V g  are both 
of the order rol ,  r, being the characteristic length associated with R. The terms which 
give divergent contributions as ro+ 0 have been excluded on physical grounds and 
those terms which vanish in the limit io+ 0 have been neglectedt. 

The RHS of ( 2 )  can be interpreted as a generalised Peach-Koehler force X (Peach 
and Koehler 1950) with I, m linear in VG. We note that in deriving (12) we have not 
assumed that we deal with a Hamiltonian system; if this is the case, however, the 
generalised Peach-Koehler force X can be obtained simply by variation from the 
potential, i.e. no explicit consideration of the amplitude dependence is necessary in 
this case (Kawasaki and Brand 1984). The general structure of the generalised Peach- 
Koehler force can be inferred by symmetry considerations. For example, for a disloca- 
tion in the roll structure of convection with wavevector k perpendicular to the rolls ll 
takes the following general form 

II = b,&+ b&+ b3k*k*+ b 4 i i  (13) 
where 6 is the unit vector orthogonal to k* in the plane and the b's are coefficients 
which can be expressed as certain integrals over R. Thus we obtain 

D * k = X =  b,i(k**Vcp') + b , k * ( i - V G )  +b3k*(k*.Vcp') + b , i ( G . V t j ) .  (14) 

We mention in passing that glide and climb in convective roll structures will enter (14) 
through parts of b2, b3 (glide) and b l ,  b4 (climb) provided D does not contain vk and 
kv components. Equation (14) is to be supplemented with the phase dynamic equation 
(1) where cp is multivalued in the presence of a defect. Sometimes it is useful to express 
this equation in terms of a single valued phase cp by replacing Vcp by Vcp- 
2 r O ( 7 ) 8 ( 5 ) V L  where O ( 7 )  is the step function and S(5) is the non-vanishing delta 
function on the surface (line) of discontinuity 5 = 0 with phase jump 2 r  that emerges 
from the defect and v( r )  = positive constant defines a family of smooth curves which 
intersect orthogonally the line of discontinuity such that the value of the constant 
becomes negative if the curve no longer intersects the line of discontinuity. Thus we 
find that, e.g. the simple diffusive phase dynamic equation is replaced by 

a,cp = D[V*cp - 2 r v  * O ( q ) S ( L ) V J ]  (15) 
with a single-valued phase cp. We stress that the domain of validity of (15) is the same 
as for a multivalued cp i.e. only outside R. 
f It is presupposed that the defect volume is not excessively anisotropic, otherwise, power counting can be 
different. 
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In deriving the dynamic equations for the motions of the defects we had to include 
at intermediate steps equations which contained explicitly the moduli Si and their 
gradients. The final equations, however, do not have this explicit dependence but only 
the phenomenological coefficients in our equations, e.g. the b’s in (14) do, of course, 
depend on these values. To evaluate the phenomenological parameters one has to go 
back to a more microscopic description in pretty much the same spirit as one can 
calculate coefficients like the kinematic viscosity in the Navier-Stokes equation from 
a Boltzmann equation approach. Therefore, changing order parameter profiles near 
defects will change the algebraic numbers for the coefficients but not the symmetries 
of the basic equations. 

Finally we consider a simple example; a defect in the convective structure of a 
high Prandtl number fluid (e.g. silicon oil, cf Berg6 and Dubois 1982) for which 
so-called mean flow terms in the phase equation (which come predominantly from 
vertical vorticity effects) are believed to be unimportant (Cross 1983). 

For the nonlinear phase equation far away from any defect we have (assuming a 
gradient expansion to be valid) 

d = Di (PXX + D 2 ~ y v  $- 51 (PXXXX f i 2 ( p y Y y ~  + FI ( P y q ~ y u  +FZQXQXX 1 (16) 

where we have assumed the symmetry cp + -cp under x + -x and y + -y  separately. 

the modulus 
Close to the defect core we have two equations-one for the phase and one for 

d = Dl cpxx + D 2 ( P y y  + f i l  cpxxu  + f i 2 ( P y y y y  + FI (Py’pyy 

S = E I Sxx + E2Sy, + fi3q’, + f i 4 ( p $  + as: + PS; + . . .. 
+ F ~ ( P X ( P X X  + NI SXV, + N 2 s y ( ~ p  + . . . (17) 

(18) 

From (17) and (18) we can now proceed as outlined above in (3)-( 11) to get a dynamic 
equation for the defect as a macroscopic object. 

D - k =  (VCp. N -VSV$ +VS* N .V$V@) (19) 

X = bl i$ + b& + b3$ + b,ii. 

I, 
and for the generalised Peach-Koehler force we have 

(20) 

Further algebraic details and generalisations of the approach presented here will be 
found in Kawasaki (1985). Applications to other systems like nematics (as an example 
for a hydrodynamic system) and the wavy vortex state of the Taylor instability in 
which the defect triggers the onset of turbulence (King and Swinney 1983) will be 
given in separate publications. We mention in closing that so-called mean flow effects 
in the phase equations which are important in low Prandtl number fluids (Cross 1983) 
are naturally included in our basic equations (1) .  The vertical vorticity, e.g., which is 
believed to be of crucial importance in this connection can be lust interpreted as an 
additional ‘phase’ equation. Using the approach given here it should also become 
possible to give a qualitative analytic discussion of the skewed varicose instability 
(Busse and Clever 1979) for which only numerical calculations are available up to now. 

To sum up we have presented a novel approach of how the macroscopic motion 
of a small number of topological defects can be incorporated into the macroscopic 
description of condensed matter systems. The concept given above can be equally 
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well applied to equilibrium and non-equilibrium systems and is independent of the 
existence of a Liapunov functional, the basic ingredient being the assumption that the 
defect (as an extended object) can be described as an entity which evolves dynamically 
on a time scale comparable to the time scales of the other macroscopic variables. 

H R Brand was supported by the Japan Society for the Promotion of Science and 
K Kawasaki was supported in part by the Grant-in-Aid for Fusion Research of the 
Ministry of Education, Science and Culture. 
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